import numpy as np class ConvEncoder: #code is an array representing the code #punctures where puncture is true #code and puncture must have the same height #if stream == False the encoder will flush after every call to feed() # def __init__(self, code, feedback=False, puncture=None, stream=True, block=2000): validcode = False self.code = np.array(code, dtype=np.bool_) self.feedback = feedback if puncture is not None: self.puncture = np.array(puncture, dtype=np.bool_) if self.node.shape[0] != self.puncture.shape[0]: raise ValueError('code and feedback must have the same number of rows.') if not isinstance(stream, bool): raise TypeError('stream must be a boolean (received %s)' % str(type(stream))) self.stream = stream def feed(data): data = np.array(data, dtype=np.bool_)