Initial Release
This commit is contained in:
11
dma/control_blocks/CMakeLists.txt
Normal file
11
dma/control_blocks/CMakeLists.txt
Normal file
@@ -0,0 +1,11 @@
|
||||
add_executable(dma_control_blocks
|
||||
control_blocks.c
|
||||
)
|
||||
|
||||
target_link_libraries(dma_control_blocks pico_stdlib hardware_dma)
|
||||
|
||||
# create map/bin/hex file etc.
|
||||
pico_add_extra_outputs(dma_control_blocks)
|
||||
|
||||
# add url via pico_set_program_url
|
||||
example_auto_set_url(dma_control_blocks)
|
||||
111
dma/control_blocks/control_blocks.c
Normal file
111
dma/control_blocks/control_blocks.c
Normal file
@@ -0,0 +1,111 @@
|
||||
/**
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
// Use two DMA channels to make a programmed sequence of data transfers to the
|
||||
// UART (a data gather operation). One channel is responsible for transferring
|
||||
// the actual data, the other repeatedly reprograms that channel.
|
||||
|
||||
#include <stdio.h>
|
||||
#include "pico/stdlib.h"
|
||||
#include "hardware/dma.h"
|
||||
#include "hardware/structs/uart.h"
|
||||
|
||||
// These buffers will be DMA'd to the UART, one after the other.
|
||||
|
||||
const char word0[] = "Transferring ";
|
||||
const char word1[] = "one ";
|
||||
const char word2[] = "word ";
|
||||
const char word3[] = "at ";
|
||||
const char word4[] = "a ";
|
||||
const char word5[] = "time.\n";
|
||||
|
||||
// Note the order of the fields here: it's important that the length is before
|
||||
// the read address, because the control channel is going to write to the last
|
||||
// two registers in alias 3 on the data channel:
|
||||
// +0x0 +0x4 +0x8 +0xC (Trigger)
|
||||
// Alias 0: READ_ADDR WRITE_ADDR TRANS_COUNT CTRL
|
||||
// Alias 1: CTRL READ_ADDR WRITE_ADDR TRANS_COUNT
|
||||
// Alias 2: CTRL TRANS_COUNT READ_ADDR WRITE_ADDR
|
||||
// Alias 3: CTRL WRITE_ADDR TRANS_COUNT READ_ADDR
|
||||
//
|
||||
// This will program the transfer count and read address of the data channel,
|
||||
// and trigger it. Once the data channel completes, it will restart the
|
||||
// control channel (via CHAIN_TO) to load the next two words into its control
|
||||
// registers.
|
||||
|
||||
const struct {uint32_t len; const char *data;} control_blocks[] = {
|
||||
{count_of(word0) - 1, word0}, // Skip null terminator
|
||||
{count_of(word1) - 1, word1},
|
||||
{count_of(word2) - 1, word2},
|
||||
{count_of(word3) - 1, word3},
|
||||
{count_of(word4) - 1, word4},
|
||||
{count_of(word5) - 1, word5},
|
||||
{0, NULL} // Null trigger to end chain.
|
||||
};
|
||||
|
||||
int main() {
|
||||
stdio_init_all();
|
||||
puts("DMA control block example:");
|
||||
|
||||
// ctrl_chan loads control blocks into data_chan, which executes them.
|
||||
int ctrl_chan = dma_claim_unused_channel(true);
|
||||
int data_chan = dma_claim_unused_channel(true);
|
||||
|
||||
// The control channel transfers two words into the data channel's control
|
||||
// registers, then halts. The write address wraps on a two-word
|
||||
// (eight-byte) boundary, so that the control channel writes the same two
|
||||
// registers when it is next triggered.
|
||||
|
||||
dma_channel_config c = dma_channel_get_default_config(ctrl_chan);
|
||||
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
|
||||
channel_config_set_read_increment(&c, true);
|
||||
channel_config_set_write_increment(&c, true);
|
||||
channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr
|
||||
|
||||
dma_channel_configure(
|
||||
ctrl_chan,
|
||||
&c,
|
||||
&dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
|
||||
&control_blocks[0], // Initial read address
|
||||
2, // Halt after each control block
|
||||
false // Don't start yet
|
||||
);
|
||||
|
||||
// The data channel is set up to write to the UART FIFO (paced by the
|
||||
// UART's TX data request signal) and then chain to the control channel
|
||||
// once it completes. The control channel programs a new read address and
|
||||
// data length, and retriggers the data channel.
|
||||
|
||||
c = dma_channel_get_default_config(data_chan);
|
||||
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
|
||||
channel_config_set_dreq(&c, DREQ_UART0_TX + 2 * PICO_DEFAULT_UART);
|
||||
// Trigger ctrl_chan when data_chan completes
|
||||
channel_config_set_chain_to(&c, ctrl_chan);
|
||||
// Raise the IRQ flag when 0 is written to a trigger register (end of chain):
|
||||
channel_config_set_irq_quiet(&c, true);
|
||||
|
||||
dma_channel_configure(
|
||||
data_chan,
|
||||
&c,
|
||||
&(PICO_DEFAULT_UART ? uart1_hw : uart0_hw)->dr,
|
||||
NULL, // Initial read address and transfer count are unimportant;
|
||||
0, // the control channel will reprogram them each time.
|
||||
false // Don't start yet.
|
||||
);
|
||||
|
||||
// Everything is ready to go. Tell the control channel to load the first
|
||||
// control block. Everything is automatic from here.
|
||||
dma_start_channel_mask(1u << ctrl_chan);
|
||||
|
||||
// The data channel will assert its IRQ flag when it gets a null trigger,
|
||||
// indicating the end of the control block list. We're just going to wait
|
||||
// for the IRQ flag instead of setting up an interrupt handler.
|
||||
while (!(dma_hw->intr & 1u << data_chan))
|
||||
tight_loop_contents();
|
||||
dma_hw->ints0 = 1u << data_chan;
|
||||
|
||||
puts("DMA finished.");
|
||||
}
|
||||
Reference in New Issue
Block a user