Initial Release

This commit is contained in:
graham sanderson
2021-01-20 10:49:34 -06:00
commit 46078742c7
245 changed files with 21157 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
add_executable(bme280_spi
bme280_spi.c
)
# Pull in our (to be renamed) simple get you started dependencies
target_link_libraries(bme280_spi pico_stdlib hardware_spi)
# create map/bin/hex file etc.
pico_add_extra_outputs(bme280_spi)
# add url via pico_set_program_url
example_auto_set_url(bme280_spi)

View File

@@ -0,0 +1,50 @@
= Attaching a BME280 temperature/humidity/pressure sensor via SPI
This example code shows how to interface the Raspberry Pi Pico to a BME280 temperature/humidity/pressure. The particular device used can be interfaced via I2C or SPI, we are using SPI, and interfacing at 3.3v.
This examples reads the data from the sensor, and runs it through the appropriate compensation routines (see the chip datasheet for details https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf). At startup the compensation parameters required by the compensation routines are read from the chip.
)
== Wiring information
Wiring up the device requires 6 jumpers as follows:
* GPIO 16 (pin 21) MISO/spi0_rx-> SDO/SDO on bme280 board
* GPIO 17 (pin 22) Chip select -> CSB/!CS on bme280 board
* GPIO 18 (pin 24) SCK/spi0_sclk -> SCL/SCK on bme280 board
* GPIO 19 (pin 25) MOSI/spi0_tx -> SDA/SDI on bme280 board
* 3.3v (pin 3;6) -> VCC on bme280 board
* GND (pin 38) -> GND on bme280 board
The example here uses SPI port 0. Power is supplied from the 3.3V pin.
[NOTE]
======
There are many different manufacturers who sell boards with the BME280. Whilst they all appear slightly different, they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different to the one in the diagram, ensure you connect up as described in the previous paragraph.
======
[[BME280_spi_wiring]]
[pdfwidth=75%]
.Wiring Diagram for bme280.
image::bme280_spi_bb.png[]
== List of Files
CMakeLists.txt:: CMake file to incorporate the example in to the examples build tree.
bme280_spi.c:: The example code.
== Bill of Materials
.A list of materials required for the example
[[BME280-bom-table]]
[cols=3]
|===
| *Item* | *Quantity* | Details
| Breadboard | 1 | generic part
| Raspberry Pi Pico | 1 | http://raspberrypi.org/
| BME280 board| 1 | generic part
| M/M Jumper wires | 6 | generic part
|===

233
spi/bme280_spi/bme280_spi.c Normal file
View File

@@ -0,0 +1,233 @@
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "hardware/spi.h"
/* Example code to talk to a bme280 humidity/temperature/pressure sensor.
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefor SPI) cannot be used at 5v.
You will need to use a level shifter on the SPI lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board and a generic bme280 board, other
boards may vary.
GPIO 16 (pin 21) MISO/spi0_rx-> SDO/SDO on bme280 board
GPIO 17 (pin 22) Chip select -> CSB/!CS on bme280 board
GPIO 18 (pin 24) SCK/spi0_sclk -> SCL/SCK on bme280 board
GPIO 19 (pin 25) MOSI/spi0_tx -> SDA/SDI on bme280 board
3.3v (pin 3;6) -> VCC on bme280 board
GND (pin 38) -> GND on bme280 board
Note: SPI devices can have a number of different naming schemes for pins. See
the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
for variations.
This code uses a bunch of register definitions, and some compensation code derived
from the Bosch datasheet which can be found here.
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
*/
#define PIN_MISO 16
#define PIN_CS 17
#define PIN_SCK 18
#define PIN_MOSI 19
#define SPI_PORT spi0
#define READ_BIT 0x80
int32_t t_fine;
uint16_t dig_T1;
int16_t dig_T2, dig_T3;
uint16_t dig_P1;
int16_t dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;
uint8_t dig_H1, dig_H3;
int8_t dig_H6;
int16_t dig_H2, dig_H4, dig_H5;
/* The following compensation functions are required to convert from the raw ADC
data from the chip to something usable. Each chip has a different set of
compensation parameters stored on the chip at point of manufacture, which are
read from the chip at startup and used inthese routines.
*/
int32_t compensate_temp(int32_t adc_T) {
int32_t var1, var2, T;
var1 = ((((adc_T >> 3) - ((int32_t) dig_T1 << 1))) * ((int32_t) dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((int32_t) dig_T1)) * ((adc_T >> 4) - ((int32_t) dig_T1))) >> 12) * ((int32_t) dig_T3))
>> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
uint32_t compensate_pressure(int32_t adc_P) {
int32_t var1, var2;
uint32_t p;
var1 = (((int32_t) t_fine) >> 1) - (int32_t) 64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t) dig_P6);
var2 = var2 + ((var1 * ((int32_t) dig_P5)) << 1);
var2 = (var2 >> 2) + (((int32_t) dig_P4) << 16);
var1 = (((dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t) dig_P2) * var1) >> 1)) >> 18;
var1 = ((((32768 + var1)) * ((int32_t) dig_P1)) >> 15);
if (var1 == 0)
return 0;
p = (((uint32_t) (((int32_t) 1048576) - adc_P) - (var2 >> 12))) * 3125;
if (p < 0x80000000)
p = (p << 1) / ((uint32_t) var1);
else
p = (p / (uint32_t) var1) * 2;
var1 = (((int32_t) dig_P9) * ((int32_t) (((p >> 3) * (p >> 3)) >> 13))) >> 12;
var2 = (((int32_t) (p >> 2)) * ((int32_t) dig_P8)) >> 13;
p = (uint32_t) ((int32_t) p + ((var1 + var2 + dig_P7) >> 4));
return p;
}
uint32_t compensate_humidity(int32_t adc_H) {
int32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((int32_t) 76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t) dig_H4) << 20) - (((int32_t) dig_H5) * v_x1_u32r)) +
((int32_t) 16384)) >> 15) * (((((((v_x1_u32r * ((int32_t) dig_H6)) >> 10) * (((v_x1_u32r *
((int32_t) dig_H3))
>> 11) + ((int32_t) 32768))) >> 10) + ((int32_t) 2097152)) *
((int32_t) dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t) dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
return (uint32_t) (v_x1_u32r >> 12);
}
static inline void cs_select() {
asm volatile("nop \n nop \n nop");
gpio_put(PIN_CS, 0); // Active low
asm volatile("nop \n nop \n nop");
}
static inline void cs_deselect() {
asm volatile("nop \n nop \n nop");
gpio_put(PIN_CS, 1);
asm volatile("nop \n nop \n nop");
}
static void write_register(uint8_t reg, uint8_t data) {
uint8_t buf[2];
buf[0] = reg & 0x7f; // remove read bit as this is a write
buf[1] = data;
cs_select();
spi_write_blocking(SPI_PORT, buf, 2);
cs_deselect();
sleep_ms(10);
}
static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {
// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.
reg |= READ_BIT;
cs_select();
spi_write_blocking(SPI_PORT, &reg, 1);
sleep_ms(10);
spi_read_blocking(SPI_PORT, 0, buf, len);
cs_deselect();
sleep_ms(10);
}
/* This function reads the manufacturing assigned compensation parameters from the device */
void read_compensation_parameters() {
uint8_t buffer[26];
read_registers(0x88, buffer, 24);
dig_T1 = buffer[0] | (buffer[1] << 8);
dig_T2 = buffer[2] | (buffer[3] << 8);
dig_T3 = buffer[4] | (buffer[5] << 8);
dig_P1 = buffer[6] | (buffer[7] << 8);
dig_P2 = buffer[8] | (buffer[9] << 8);
dig_P3 = buffer[10] | (buffer[11] << 8);
dig_P4 = buffer[12] | (buffer[13] << 8);
dig_P5 = buffer[14] | (buffer[15] << 8);
dig_P6 = buffer[16] | (buffer[17] << 8);
dig_P7 = buffer[18] | (buffer[19] << 8);
dig_P8 = buffer[20] | (buffer[21] << 8);
dig_P9 = buffer[22] | (buffer[23] << 8);
dig_H1 = buffer[25];
read_registers(0xE1, buffer, 8);
dig_H2 = buffer[0] | (buffer[1] << 8);
dig_H3 = (int8_t) buffer[2];
dig_H4 = buffer[3] << 4 | (buffer[4] & 0xf);
dig_H5 = (buffer[5] >> 4) | (buffer[6] << 4);
dig_H6 = (int8_t) buffer[7];
}
static void bme280_read_raw(int32_t *humidity, int32_t *pressure, int32_t *temperature) {
uint8_t buffer[8];
read_registers(0xF7, buffer, 8);
*pressure = ((uint32_t) buffer[0] << 12) | ((uint32_t) buffer[1] << 4) | (buffer[2] >> 4);
*temperature = ((uint32_t) buffer[3] << 12) | ((uint32_t) buffer[4] << 4) | (buffer[5] >> 4);
*humidity = (uint32_t) buffer[6] << 8 | buffer[7];
}
int main() {
stdio_init_all();
printf("Hello, bme280! Reading raw data from registers via SPI...\n");
// This example will use SPI0 at 0.5MHz.
spi_init(SPI_PORT, 500 * 1000);
gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
// Chip select is active-low, so we'll initialise it to a driven-high state
gpio_init(PIN_CS);
gpio_set_dir(PIN_CS, GPIO_OUT);
gpio_put(PIN_CS, 1);
// See if SPI is working - interrograte the device for its I2C ID number, should be 0x60
uint8_t id;
read_registers(0xD0, &id, 1);
printf("Chip ID is 0x%x\n", id);
read_compensation_parameters();
write_register(0xF2, 0x1); // Humidity oversampling register - going for x1
write_register(0xF4, 0x27);// Set rest of oversampling modes and run mode to normal
int32_t humidity, pressure, temperature;
while (1) {
bme280_read_raw(&humidity, &pressure, &temperature);
// These are the raw numbers from the chip, so we need to run through the
// compensations to get human understandable numbers
pressure = compensate_pressure(pressure);
temperature = compensate_temp(temperature);
humidity = compensate_humidity(humidity);
printf("Humidity = %.2f%%\n", humidity / 1024.0);
printf("Pressure = %dPa\n", pressure);
printf("Temp. = %.2fC\n", temperature / 100.0);
sleep_ms(1000);
}
return 0;
}

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB