Additional examples for specific h/w by our interns (#171)

adc/microphone_adc - Read analog values from a microphone and plot the measured sound amplitude.
i2c/bmp280_i2c - Read and convert temperature and pressure data from a BMP280 sensor, attached to an I2C bus.
i2c/lis3dh_i2c - Read acceleration and temperature value from a LIS3DH sensor via I2C
i2c/mcp9808_i2c - Read temperature, set limits and raise alerts when limits are surpassed.
i2c/mma8451_i2c - Read acceleration from a MMA8451 accelerometer and set range and precision for the data.
i2c/mpl3115a2_i2c - Interface with an MPL3115A2 altimeter, exploring interrupts and advanced board features, via I2C.
i2c/oled_i2c - Convert and display a bitmap on a 128x32 SSD1306-driven OLED display
i2c/pa1010d_i2c - Read GPS location data, parse and display data via I2C.
i2c/pcf8523_i2c - Read time and date values from a real time clock. Set current time and alarms on it.
uart/lcd_uart - Display text and symbols on a 16x02 RGB LCD display via UART
This commit is contained in:
Graham Sanderson
2021-10-25 12:30:57 -05:00
committed by GitHub
parent fabb762f75
commit 6e647c6f26
59 changed files with 2440 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
add_executable(bmp280_i2c
bmp280_i2c.c
)
# pull in common dependencies and additional i2c hardware support
target_link_libraries(bmp280_i2c pico_stdlib hardware_i2c)
# create map/bin/hex file etc.
pico_add_extra_outputs(bmp280_i2c)
# add url via pico_set_program_url
example_auto_set_url(bmp280_i2c)

View File

@@ -0,0 +1,41 @@
= Attaching a BMP280 temp/pressure sensor via I2C
This example code shows how to interface the Raspberry Pi Pico with the popular BMP280 temperature and air pressure sensor manufactured by Bosch. A similar variant, the BME280, exists that can also measure humidity. There is another example that uses the BME280 device but talks to it via SPI as opposed to I2C.
The code reads data from the sensor's registers every 500 milliseconds and prints it via the onboard UART. This example operates the BMP280 in _normal_ mode, meaning that the device continuously cycles between a measurement period and a standby period at a regular interval we can set. This has the advantage that subsequent reads do not require configuration register writes and is the recommended mode of operation to filter out short-term disturbances.
[TIP]
======
The BMP280 is highly configurable with 3 modes of operation, various oversampling levels, and 5 filter settings. Find the datasheet online (https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf) to explore all of its capabilities beyond the simple example given here.
======
== Wiring information
Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses the default I2C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin from the Pico.
WARNING: The BMP280 has a maximum supply voltage rating of 3.6V. Most breakout boards have voltage regulators that will allow a range of input voltages of 2-6V, but make sure to check beforehand.
[[bmp280_i2c_wiring]]
[pdfwidth=75%]
.Wiring Diagram for BMP280 sensor via I2C.
image::bmp280_i2c_bb.png[]
== List of Files
CMakeLists.txt:: CMake file to incorporate the example into the examples build tree.
bmp280_i2c.c:: The example code.
== Bill of Materials
.A list of materials required for the example
[[bmp280_i2c-bom-table]]
[cols=3]
|===
| *Item* | *Quantity* | Details
| Breadboard | 1 | generic part
| Raspberry Pi Pico | 1 | https://www.raspberrypi.com/products/raspberry-pi-pico/
| BMP280-based breakout board | 1 | https://shop.pimoroni.com/products/bmp280-breakout-temperature-pressure-altitude-sensor[from Pimoroni]
| M/M Jumper wires | 4 | generic part
|===

252
i2c/bmp280_i2c/bmp280_i2c.c Normal file
View File

@@ -0,0 +1,252 @@
/**
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
**/
#include <stdio.h>
#include "hardware/i2c.h"
#include "pico/binary_info.h"
#include "pico/stdlib.h"
/* Example code to talk to a BMP280 temperature and pressure sensor
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.
You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on BMP280
board
GPIO PICO_DEFAULT_I2C_SCK_PIN (on Pico this is GP5 (pin 7)) -> SCL on
BMP280 board
3.3v (pin 36) -> VCC on BMP280 board
GND (pin 38) -> GND on BMP280 board
*/
// device has default bus address of 0x76
#define ADDR _u(0x76)
// hardware registers
#define REG_CONFIG _u(0xF5)
#define REG_CTRL_MEAS _u(0xF4)
#define REG_RESET _u(0xE0)
#define REG_TEMP_XLSB _u(0xFC)
#define REG_TEMP_LSB _u(0xFB)
#define REG_TEMP_MSB _u(0xFA)
#define REG_PRESSURE_XLSB _u(0xF9)
#define REG_PRESSURE_LSB _u(0xF8)
#define REG_PRESSURE_MSB _u(0xF7)
// calibration registers
#define REG_DIG_T1_LSB _u(0x88)
#define REG_DIG_T1_MSB _u(0x89)
#define REG_DIG_T2_LSB _u(0x8A)
#define REG_DIG_T2_MSB _u(0x8B)
#define REG_DIG_T3_LSB _u(0x8C)
#define REG_DIG_T3_MSB _u(0x8D)
#define REG_DIG_P1_LSB _u(0x8E)
#define REG_DIG_P1_MSB _u(0x8F)
#define REG_DIG_P2_LSB _u(0x90)
#define REG_DIG_P2_MSB _u(0x91)
#define REG_DIG_P3_LSB _u(0x92)
#define REG_DIG_P3_MSB _u(0x93)
#define REG_DIG_P4_LSB _u(0x94)
#define REG_DIG_P4_MSB _u(0x95)
#define REG_DIG_P5_LSB _u(0x96)
#define REG_DIG_P5_MSB _u(0x97)
#define REG_DIG_P6_LSB _u(0x98)
#define REG_DIG_P6_MSB _u(0x99)
#define REG_DIG_P7_LSB _u(0x9A)
#define REG_DIG_P7_MSB _u(0x9B)
#define REG_DIG_P8_LSB _u(0x9C)
#define REG_DIG_P8_MSB _u(0x9D)
#define REG_DIG_P9_LSB _u(0x9E)
#define REG_DIG_P9_MSB _u(0x9F)
// number of calibration registers to be read
#define NUM_CALIB_PARAMS 24
struct bmp280_calib_param {
// temperature params
uint16_t dig_t1;
int16_t dig_t2;
int16_t dig_t3;
// pressure params
uint16_t dig_p1;
int16_t dig_p2;
int16_t dig_p3;
int16_t dig_p4;
int16_t dig_p5;
int16_t dig_p6;
int16_t dig_p7;
int16_t dig_p8;
int16_t dig_p9;
};
#ifdef i2c_default
void bmp280_init() {
// use the "handheld device dynamic" optimal setting (see datasheet)
uint8_t buf[2];
// 500ms sampling time, x16 filter
const uint8_t reg_config_val = ((0x04 << 5) | (0x05 << 2)) & 0xFC;
// send register number followed by its corresponding value
buf[0] = REG_CONFIG;
buf[1] = reg_config_val;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
// osrs_t x1, osrs_p x4, normal mode operation
const uint8_t reg_ctrl_meas_val = (0x01 << 5) | (0x03 << 2) | (0x03);
buf[0] = REG_CTRL_MEAS;
buf[1] = reg_ctrl_meas_val;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
}
void bmp280_read_raw(int32_t* temp, int32_t* pressure) {
// BMP280 data registers are auto-incrementing and we have 3 temperature and
// pressure registers each, so we start at 0xF7 and read 6 bytes to 0xFC
// note: normal mode does not require further ctrl_meas and config register writes
uint8_t buf[6];
i2c_write_blocking(i2c_default, ADDR, (uint8_t*)REG_PRESSURE_MSB, 1, true); // true to keep master control of bus
i2c_read_blocking(i2c_default, ADDR, buf, 6, false); // false - finished with bus
// store the 20 bit read in a 32 bit signed integer for conversion
*pressure = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
*temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
}
void bmp280_reset() {
// reset the device with the power-on-reset procedure
uint8_t buf[2] = { REG_RESET, 0xB6 };
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
}
// intermediate function that calculates the fine resolution temperature
// used for both pressure and temperature conversions
int32_t bmp280_convert(int32_t temp, struct bmp280_calib_param* params) {
// use the 32-bit fixed point compensation implementation given in the
// datasheet
int32_t var1, var2;
var1 = ((((temp >> 3) - ((int32_t)params->dig_t1 << 1))) * ((int32_t)params->dig_t2)) >> 11;
var2 = (((((temp >> 4) - ((int32_t)params->dig_t1)) * ((temp >> 4) - ((int32_t)params->dig_t1))) >> 12) * ((int32_t)params->dig_t3)) >> 14;
return var1 + var2;
}
int32_t bmp280_convert_temp(int32_t temp, struct bmp280_calib_param* params) {
// uses the BMP280 calibration parameters to compensate the temperature value read from its registers
int32_t t_fine = bmp280_convert(temp, params);
return (t_fine * 5 + 128) >> 8;
}
int32_t bmp280_convert_pressure(int32_t pressure, int32_t temp, struct bmp280_calib_param* params) {
// uses the BMP280 calibration parameters to compensate the pressure value read from its registers
int32_t t_fine = bmp280_convert(temp, params);
int32_t var1, var2;
uint32_t converted = 0.0;
var1 = (((int32_t)t_fine) >> 1) - (int32_t)64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t)params->dig_p6);
var2 += ((var1 * ((int32_t)params->dig_p5)) << 1);
var2 = (var2 >> 2) + (((int32_t)params->dig_p4) << 16);
var1 = (((params->dig_p3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t)params->dig_p2) * var1) >> 1)) >> 18;
var1 = ((((32768 + var1)) * ((int32_t)params->dig_p1)) >> 15);
if (var1 == 0) {
return 0; // avoid exception caused by division by zero
}
converted = (((uint32_t)(((int32_t)1048576) - pressure) - (var2 >> 12))) * 3125;
if (converted < 0x80000000) {
converted = (converted << 1) / ((uint32_t)var1);
} else {
converted = (converted / (uint32_t)var1) * 2;
}
var1 = (((int32_t)params->dig_p9) * ((int32_t)(((converted >> 3) * (converted >> 3)) >> 13))) >> 12;
var2 = (((int32_t)(converted >> 2)) * ((int32_t)params->dig_p8)) >> 13;
converted = (uint32_t)((int32_t)converted + ((var1 + var2 + params->dig_p7) >> 4));
return converted;
}
void bmp280_get_calib_params(struct bmp280_calib_param* params) {
// raw temp and pressure values need to be calibrated according to
// parameters generated during the manufacturing of the sensor
// there are 3 temperature params, and 9 pressure params, each with a LSB
// and MSB register, so we read from 24 registers
uint8_t buf[NUM_CALIB_PARAMS] = { 0 };
i2c_write_blocking(i2c_default, ADDR, (uint8_t*)REG_DIG_T1_LSB, 1, true); // true to keep master control of bus
// read in one go as register addresses auto-increment
i2c_read_blocking(i2c_default, ADDR, buf, NUM_CALIB_PARAMS, false); // false, we're done reading
// store these in a struct for later use
params->dig_t1 = (uint16_t)(buf[1] << 8) | buf[0];
params->dig_t2 = (int16_t)(buf[3] << 8) | buf[2];
params->dig_t3 = (int16_t)(buf[5] << 8) | buf[4];
params->dig_p1 = (uint16_t)(buf[7] << 8) | buf[6];
params->dig_p2 = (int16_t)(buf[9] << 8) | buf[8];
params->dig_p3 = (int16_t)(buf[11] << 8) | buf[10];
params->dig_p4 = (int16_t)(buf[13] << 8) | buf[12];
params->dig_p5 = (int16_t)(buf[15] << 8) | buf[14];
params->dig_p6 = (int16_t)(buf[17] << 8) | buf[16];
params->dig_p7 = (int16_t)(buf[19] << 8) | buf[18];
params->dig_p8 = (int16_t)(buf[21] << 8) | buf[20];
params->dig_p9 = (int16_t)(buf[23] << 8) | buf[22];
}
#endif
int main() {
stdio_init_all();
// useful information for picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C));
bi_decl(bi_program_description("BMP280 I2C example for the Raspberry Pi Pico"));
#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) || !defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c / bmp280_i2c example requires a board with I2C pins
puts("Default I2C pins were not defined");
#else
printf("Hello, BMP280! Reading temperaure and pressure values from sensor...\n");
// I2C is "open drain", pull ups to keep signal high when no data is being sent
i2c_init(i2c_default, 100 * 1000);
gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
// configure BMP280
bmp280_init();
// retrieve fixed compensation params
struct bmp280_calib_param params;
bmp280_get_calib_params(&params);
int32_t raw_temperature;
int32_t raw_pressure;
sleep_ms(250); // sleep so that data polling and register update don't collide
while (1) {
bmp280_read_raw(&raw_temperature, &raw_pressure);
int32_t temperature = bmp280_convert_temp(raw_temperature, &params);
int32_t pressure = bmp280_convert_pressure(raw_pressure, raw_temperature, &params);
printf("Pressure = %.3f kPa\n", pressure / 1000.f);
printf("Temp. = %.2f C\n", temperature / 100.f);
// poll every 500ms
sleep_ms(500);
}
#endif
return 0;
}

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB