Compare commits
7 Commits
4005af122e
...
1f492d0835
| Author | SHA1 | Date | |
|---|---|---|---|
| 1f492d0835 | |||
|
|
eca13acf57 | ||
|
|
cbf8072072 | ||
|
|
465a2a3824 | ||
|
|
0d4a9f28c0 | ||
|
|
654aabc686 | ||
|
|
8df09c9a7c |
@@ -202,7 +202,7 @@ App|Description
|
||||
[picow_bt_example_spp_flowcontrol](https://github.com/bluekitchen/btstack/tree/master/example/spp_flowcontrol.c) | SPP Server - RFCOMM Flow Control.
|
||||
[picow_bt_example_spp_streamer_client](https://github.com/bluekitchen/btstack/tree/master/example/spp_streamer_client.c) | Performance - Stream Data over SPP (Client.c).
|
||||
[picow_bt_example_spp_streamer](https://github.com/bluekitchen/btstack/tree/master/example/spp_streamer.c) | Performance - Stream Data over SPP (Server.c).
|
||||
[picow_bt_example_ublox_spp_le_counter](pico_w/bt/ublox_spp_le_counter.c) | LE u-blox SPP-like Heartbeat Server.
|
||||
[picow_bt_example_ublox_spp_le_counter](https://github.com/bluekitchen/btstack/blob/master/example/ublox_spp_le_counter.c) | LE u-blox SPP-like Heartbeat Server.
|
||||
|
||||
Some Standalone Bluetooth examples (without all the common example build infrastructure) are also available:
|
||||
|
||||
|
||||
@@ -35,7 +35,7 @@ int power_source(bool *battery_powered) {
|
||||
int power_voltage(float *voltage_result) {
|
||||
#ifndef PICO_VSYS_PIN
|
||||
return PICO_ERROR_NO_DATA;
|
||||
#endif
|
||||
#else
|
||||
#if CYW43_USES_VSYS_PIN
|
||||
cyw43_thread_enter();
|
||||
// Make sure cyw43 is awake
|
||||
@@ -73,4 +73,5 @@ int power_voltage(float *voltage_result) {
|
||||
const float conversion_factor = 3.3f / (1 << 12);
|
||||
*voltage_result = vsys * 3 * conversion_factor;
|
||||
return PICO_OK;
|
||||
#endif
|
||||
}
|
||||
@@ -1,10 +1,11 @@
|
||||
if (TARGET tinyusb_device)
|
||||
add_executable(hello_usb
|
||||
hello_usb.c
|
||||
hello_usb.cpp
|
||||
)
|
||||
|
||||
set(PICO_CXX_ENABLE_EXCEPTIONS 1)
|
||||
# pull in common dependencies
|
||||
target_link_libraries(hello_usb pico_stdlib)
|
||||
target_link_libraries(hello_usb pico_stdlib pico_multicore pico_util)
|
||||
target_compile_definitions(hello_usb PRIVATE PARAM_ASSERTIONS_ENABLE_ALL=1)
|
||||
|
||||
# enable usb output, disable uart output
|
||||
pico_enable_stdio_usb(hello_usb 1)
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
/**
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "pico/stdlib.h"
|
||||
|
||||
int main() {
|
||||
stdio_init_all();
|
||||
while (true) {
|
||||
printf("Hello, world!\n");
|
||||
sleep_ms(1000);
|
||||
}
|
||||
}
|
||||
44
hello_world/usb/hello_usb.cpp
Normal file
44
hello_world/usb/hello_usb.cpp
Normal file
@@ -0,0 +1,44 @@
|
||||
/**
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "pico/stdlib.h"
|
||||
#include "pico/mutex.h"
|
||||
#include "pico/multicore.h"
|
||||
#include "wrappers/Queue.h"
|
||||
#include <string>
|
||||
|
||||
auto_init_mutex(printf_lock);
|
||||
Queue<std::string> queue(10);
|
||||
//Queue<int> int_queue(10);
|
||||
|
||||
void main1() {
|
||||
while (true) {
|
||||
std::string message;
|
||||
queue.blocking_remove(&message);
|
||||
printf(message.c_str());
|
||||
printf("\n");
|
||||
//int count;
|
||||
//int_queue.blocking_remove(&count);
|
||||
//printf("%i\n", count);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
int main() {
|
||||
stdio_init_all();
|
||||
multicore_launch_core1(main1);
|
||||
int count = 0;
|
||||
while (true) {
|
||||
std::string message;
|
||||
message = std::to_string(count++);
|
||||
printf("Is wrapped: %i\n", queue.wrapped);
|
||||
printf("Enqueue %s\n", message.c_str());
|
||||
queue.blocking_add(&message);
|
||||
//int_queue.blocking_add(&count);
|
||||
sleep_ms(1000);
|
||||
}
|
||||
}
|
||||
@@ -108,7 +108,7 @@ static void ntp_recv(void *arg, struct udp_pcb *pcb, struct pbuf *p, const ip_ad
|
||||
|
||||
// Perform initialisation
|
||||
static NTP_T* ntp_init(void) {
|
||||
NTP_T *state = calloc(1, sizeof(NTP_T));
|
||||
NTP_T *state = (NTP_T*)calloc(1, sizeof(NTP_T));
|
||||
if (!state) {
|
||||
printf("failed to allocate state\n");
|
||||
return NULL;
|
||||
@@ -183,4 +183,4 @@ int main() {
|
||||
run_ntp_test();
|
||||
cyw43_arch_deinit();
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/**
|
||||
* Copyright (c) 2021 pmarques-dev @ github
|
||||
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
@@ -44,8 +44,10 @@ int main() {
|
||||
PIO pio = pio0;
|
||||
const uint sm = 0;
|
||||
|
||||
uint offset = pio_add_program(pio, &quadrature_encoder_program);
|
||||
quadrature_encoder_program_init(pio, sm, offset, PIN_AB, 0);
|
||||
// we don't really need to keep the offset, as this program must be loaded
|
||||
// at offset 0
|
||||
pio_add_program(pio, &quadrature_encoder_program);
|
||||
quadrature_encoder_program_init(pio, sm, PIN_AB, 0);
|
||||
|
||||
while (1) {
|
||||
// note: thanks to two's complement arithmetic delta will always
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
;
|
||||
; Copyright (c) 2021 pmarques-dev @ github
|
||||
; Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
|
||||
;
|
||||
; SPDX-License-Identifier: BSD-3-Clause
|
||||
;
|
||||
|
||||
.program quadrature_encoder
|
||||
|
||||
; this code must be loaded into address 0, but at 29 instructions, it probably
|
||||
; wouldn't be able to share space with other programs anyway
|
||||
; the code must be loaded at address 0, because it uses computed jumps
|
||||
.origin 0
|
||||
|
||||
|
||||
@@ -20,82 +19,70 @@
|
||||
; keeps the current encoder count and is incremented / decremented according to
|
||||
; the steps sampled
|
||||
|
||||
; writing any non zero value to the TX FIFO makes the state machine push the
|
||||
; current count to RX FIFO between 6 to 18 clocks afterwards. The worst case
|
||||
; sampling loop takes 14 cycles, so this program is able to read step rates up
|
||||
; to sysclk / 14 (e.g., sysclk 125MHz, max step rate = 8.9 Msteps/sec)
|
||||
|
||||
; the program keeps trying to write the current count to the RX FIFO without
|
||||
; blocking. To read the current count, the user code must drain the FIFO first
|
||||
; and wait for a fresh sample (takes ~4 SM cycles on average). The worst case
|
||||
; sampling loop takes 10 cycles, so this program is able to read step rates up
|
||||
; to sysclk / 10 (e.g., sysclk 125MHz, max step rate = 12.5 Msteps/sec)
|
||||
|
||||
; 00 state
|
||||
JMP update ; read 00
|
||||
JMP decrement ; read 01
|
||||
JMP increment ; read 10
|
||||
JMP update ; read 11
|
||||
JMP update ; read 00
|
||||
JMP decrement ; read 01
|
||||
JMP increment ; read 10
|
||||
JMP update ; read 11
|
||||
|
||||
; 01 state
|
||||
JMP increment ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP decrement ; read 11
|
||||
JMP increment ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP decrement ; read 11
|
||||
|
||||
; 10 state
|
||||
JMP decrement ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP increment ; read 11
|
||||
JMP decrement ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP increment ; read 11
|
||||
|
||||
; to reduce code size, the last 2 states are implemented in place and become the
|
||||
; target for the other jumps
|
||||
|
||||
; 11 state
|
||||
JMP update ; read 00
|
||||
JMP increment ; read 01
|
||||
JMP update ; read 00
|
||||
JMP increment ; read 01
|
||||
decrement:
|
||||
; note: the target of this instruction must be the next address, so that
|
||||
; the effect of the instruction does not depend on the value of Y. The
|
||||
; same is true for the "JMP X--" below. Basically "JMP Y--, <next addr>"
|
||||
; is just a pure "decrement Y" instruction, with no other side effects
|
||||
JMP Y--, update ; read 10
|
||||
; note: the target of this instruction must be the next address, so that
|
||||
; the effect of the instruction does not depend on the value of Y. The
|
||||
; same is true for the "JMP X--" below. Basically "JMP Y--, <next addr>"
|
||||
; is just a pure "decrement Y" instruction, with no other side effects
|
||||
JMP Y--, update ; read 10
|
||||
|
||||
; this is where the main loop starts
|
||||
; this is where the main loop starts
|
||||
.wrap_target
|
||||
update:
|
||||
; we start by checking the TX FIFO to see if the main code is asking for
|
||||
; the current count after the PULL noblock, OSR will have either 0 if
|
||||
; there was nothing or the value that was there
|
||||
SET X, 0
|
||||
PULL noblock
|
||||
|
||||
; since there are not many free registers, and PULL is done into OSR, we
|
||||
; have to do some juggling to avoid losing the state information and
|
||||
; still place the values where we need them
|
||||
MOV X, OSR
|
||||
MOV OSR, ISR
|
||||
|
||||
; the main code did not ask for the count, so just go to "sample_pins"
|
||||
JMP !X, sample_pins
|
||||
|
||||
; if it did ask for the count, then we push it
|
||||
MOV ISR, Y ; we trash ISR, but we already have a copy in OSR
|
||||
PUSH
|
||||
MOV ISR, Y ; read 11
|
||||
PUSH noblock
|
||||
|
||||
sample_pins:
|
||||
; we shift into ISR the last state of the 2 input pins (now in OSR) and
|
||||
; the new state of the 2 pins, thus producing the 4 bit target for the
|
||||
; computed jump into the correct action for this state
|
||||
MOV ISR, NULL
|
||||
IN OSR, 2
|
||||
IN PINS, 2
|
||||
MOV PC, ISR
|
||||
; we shift into ISR the last state of the 2 input pins (now in OSR) and
|
||||
; the new state of the 2 pins, thus producing the 4 bit target for the
|
||||
; computed jump into the correct action for this state. Both the PUSH
|
||||
; above and the OUT below zero out the other bits in ISR
|
||||
OUT ISR, 2
|
||||
IN PINS, 2
|
||||
|
||||
; the PIO does not have a increment instruction, so to do that we do a
|
||||
; negate, decrement, negate sequence
|
||||
; save the state in the OSR, so that we can use ISR for other purposes
|
||||
MOV OSR, ISR
|
||||
; jump to the correct state machine action
|
||||
MOV PC, ISR
|
||||
|
||||
; the PIO does not have a increment instruction, so to do that we do a
|
||||
; negate, decrement, negate sequence
|
||||
increment:
|
||||
MOV X, !Y
|
||||
JMP X--, increment_cont
|
||||
MOV Y, ~Y
|
||||
JMP Y--, increment_cont
|
||||
increment_cont:
|
||||
MOV Y, !X
|
||||
.wrap ; the .wrap here avoids one jump instruction and saves a cycle too
|
||||
MOV Y, ~Y
|
||||
.wrap ; the .wrap here avoids one jump instruction and saves a cycle too
|
||||
|
||||
|
||||
|
||||
@@ -106,60 +93,49 @@ increment_cont:
|
||||
|
||||
// max_step_rate is used to lower the clock of the state machine to save power
|
||||
// if the application doesn't require a very high sampling rate. Passing zero
|
||||
// will set the clock to the maximum, which gives a max step rate of around
|
||||
// 8.9 Msteps/sec at 125MHz
|
||||
// will set the clock to the maximum
|
||||
|
||||
static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint offset, uint pin, int max_step_rate)
|
||||
static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint pin, int max_step_rate)
|
||||
{
|
||||
pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false);
|
||||
gpio_pull_up(pin);
|
||||
gpio_pull_up(pin + 1);
|
||||
pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false);
|
||||
gpio_pull_up(pin);
|
||||
gpio_pull_up(pin + 1);
|
||||
|
||||
pio_sm_config c = quadrature_encoder_program_get_default_config(offset);
|
||||
sm_config_set_in_pins(&c, pin); // for WAIT, IN
|
||||
sm_config_set_jmp_pin(&c, pin); // for JMP
|
||||
// shift to left, autopull disabled
|
||||
sm_config_set_in_shift(&c, false, false, 32);
|
||||
// don't join FIFO's
|
||||
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE);
|
||||
pio_sm_config c = quadrature_encoder_program_get_default_config(0);
|
||||
|
||||
// passing "0" as the sample frequency,
|
||||
if (max_step_rate == 0) {
|
||||
sm_config_set_clkdiv(&c, 1.0);
|
||||
} else {
|
||||
// one state machine loop takes at most 14 cycles
|
||||
float div = (float)clock_get_hz(clk_sys) / (14 * max_step_rate);
|
||||
sm_config_set_clkdiv(&c, div);
|
||||
}
|
||||
sm_config_set_in_pins(&c, pin); // for WAIT, IN
|
||||
sm_config_set_jmp_pin(&c, pin); // for JMP
|
||||
// shift to left, autopull disabled
|
||||
sm_config_set_in_shift(&c, false, false, 32);
|
||||
// don't join FIFO's
|
||||
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE);
|
||||
|
||||
pio_sm_init(pio, sm, offset, &c);
|
||||
pio_sm_set_enabled(pio, sm, true);
|
||||
}
|
||||
// passing "0" as the sample frequency,
|
||||
if (max_step_rate == 0) {
|
||||
sm_config_set_clkdiv(&c, 1.0);
|
||||
} else {
|
||||
// one state machine loop takes at most 10 cycles
|
||||
float div = (float)clock_get_hz(clk_sys) / (10 * max_step_rate);
|
||||
sm_config_set_clkdiv(&c, div);
|
||||
}
|
||||
|
||||
|
||||
// When requesting the current count we may have to wait a few cycles (average
|
||||
// ~11 sysclk cycles) for the state machine to reply. If we are reading multiple
|
||||
// encoders, we may request them all in one go and then fetch them all, thus
|
||||
// avoiding doing the wait multiple times. If we are reading just one encoder,
|
||||
// we can use the "get_count" function to request and wait
|
||||
|
||||
static inline void quadrature_encoder_request_count(PIO pio, uint sm)
|
||||
{
|
||||
pio->txf[sm] = 1;
|
||||
}
|
||||
|
||||
static inline int32_t quadrature_encoder_fetch_count(PIO pio, uint sm)
|
||||
{
|
||||
while (pio_sm_is_rx_fifo_empty(pio, sm))
|
||||
tight_loop_contents();
|
||||
return pio->rxf[sm];
|
||||
pio_sm_init(pio, sm, 0, &c);
|
||||
pio_sm_set_enabled(pio, sm, true);
|
||||
}
|
||||
|
||||
static inline int32_t quadrature_encoder_get_count(PIO pio, uint sm)
|
||||
{
|
||||
quadrature_encoder_request_count(pio, sm);
|
||||
return quadrature_encoder_fetch_count(pio, sm);
|
||||
uint ret;
|
||||
int n;
|
||||
|
||||
// if the FIFO has N entries, we fetch them to drain the FIFO,
|
||||
// plus one entry which will be guaranteed to not be stale
|
||||
n = pio_sm_get_rx_fifo_level(pio, sm) + 1;
|
||||
while (n > 0) {
|
||||
ret = pio_sm_get_blocking(pio, sm);
|
||||
n--;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
%}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user